布隆过滤器相信大家没用过的话,也已经听过了。
布隆过滤器主要是为了解决海量数据的存在性问题。对于海量数据中判定某个数据是否存在且容忍轻微误差这一场景(比如缓存穿透、海量数据去重)来说,非常适合。
文章内容概览:
首先,我们需要了解布隆过滤器的概念。
布隆过滤器(Bloom Filter,BF)是一个叫做 Bloom 的老哥于 1970 年提出的。我们可以把它看作由二进制向量(或者说位数组)和一系列随机映射函数(哈希函数)两部分组成的数据结构。相比于我们平时常用的 List、Map、Set 等数据结构,它占用空间更少并且效率更高,但是缺点是其返回的结果是概率性的,而不是非常准确的。理论情况下添加到集合中的元素越多,误报的可能性就越大。并且,存放在布隆过滤器的数据不容易删除。
Bloom Filter 会使用一个较大的 bit 数组来保存所有的数据,数组中的每个元素都只占用 1 bit ,并且每个元素只能是 0 或者 1(代表 false 或者 true),这也是 Bloom Filter 节省内存的核心所在。这样来算的话,申请一个 100w 个元素的位数组只占用 1000000Bit / 8 = 125000 Byte = 125000/1024 KB ≈ 122KB 的空间。
位数组
总结:一个名叫 Bloom 的人提出了一种来检索元素是否在给定大集合中的数据结构,这种数据结构是高效且性能很好的,但缺点是具有一定的错误识别率和删除难度。并且,理论情况下,添加到集合中的元素越多,误报的可能性就越大。