先来说说它和平衡树的比较,平衡树我们又会称之为 AVL 树,是一个严格的平衡二叉树,平衡条件必须满足(所有节点的左右子树高度差不超过 1,即平衡因子为范围为 [-1,1])。平衡树的插入、删除和查询的时间复杂度和跳表一样都是 O(log n)

对于范围查询来说,它也可以通过中序遍历的方式达到和跳表一样的效果。但是它的每一次插入或者删除操作都需要保证整颗树左右节点的绝对平衡,只要不平衡就要通过旋转操作来保持平衡,这个过程是比较耗时的。

Untitled

跳表诞生的初衷就是为了克服平衡树的一些缺点,跳表的发明者在论文

《Skip lists: a probabilistic alternative to balanced trees》open in new window

中有详细提到:

Untitled

Skip lists are a data structure that can be used in place of balanced trees. Skip lists use probabilistic balancing rather than strictly enforced balancing and as a result the algorithms for insertion and deletion in skip lists are much simpler and significantly faster than equivalent algorithms for balanced trees.

跳表是一种可以用来代替平衡树的数据结构。跳表使用概率平衡而不是严格强制的平衡,因此,跳表中的插入和删除算法比平衡树的等效算法简单得多,速度也快得多。

笔者这里也贴出了 AVL 树插入操作的核心代码,可以看出每一次添加操作都需要进行一次递归定位插入位置,然后还需要根据回溯到根节点检查沿途的各层节点是否失衡,再通过旋转节点的方式进行调整。

// 向二分搜索树中添加新的元素(key, value)
public void add(K key, V value) {
    root = add(root, key, value);
}

// 向以node为根的二分搜索树中插入元素(key, value),递归算法
// 返回插入新节点后二分搜索树的根
private Node add(Node node, K key, V value) {

    if (node == null) {
        size++;
        return new Node(key, value);
    }

    if (key.compareTo(node.key) < 0)
        node.left = add(node.left, key, value);
    else if (key.compareTo(node.key) > 0)
        node.right = add(node.right, key, value);
    else // key.compareTo(node.key) == 0
        node.value = value;

    node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));

    int balanceFactor = getBalanceFactor(node);

    // LL型需要右旋
    if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0) {
        return rightRotate(node);
    }

    //RR型失衡需要左旋
    if (balanceFactor < -1 && getBalanceFactor(node.right) <= 0) {
        return leftRotate(node);
    }

    //LR需要先左旋成LL型,然后再右旋
    if (balanceFactor > 1 && getBalanceFactor(node.left) < 0) {
        node.left = leftRotate(node.left);
        return rightRotate(node);
    }

    //RL
    if (balanceFactor < -1 && getBalanceFactor(node.right) > 0) {
        node.right = rightRotate(node.right);
        return leftRotate(node);
    }
    return node;
}